
2018-1

Schriftenreihe Fachbereich Informatik

Uniform Decomposition of University Course Timetabling

Britta Herres
⇤

H. Schmitz
⇤†

March 13, 2018

Abstract

Suppose we like to find non-overlapping periods for a set of events which may have
multiple teachers assigned, is that easy or hard in terms of complexity? Or assume that only
a single teacher is fixed per event, but we like to allocate rooms and periods simultaneously.
What if a single teacher and a room is already given and we look for periods alone? And
how do requests of teachers for specific rooms or period conflicts of students change the
complexities of these questions from University Course Timetabling (UCT)?

We provide a complete hard/easy-list of all UCT subproblems derived from a typical set
of hard constraints. We obtain this list with a systematic study of the fine structure of UCT
in terms of embedded subproblems w.r.t. the order in which rooms, periods and teachers
are assigned to events. This kind of subproblems appear in practice when some entities
in a timetable are fixed while the assignments of others are (re-)computed, and they also
appear as necessary conditions for the existence of feasible timetables. Moreover, we identify
which of the seemingly di↵erent subproblems are essentially the same computational tasks
by reducing them to the same bipartite assignment problem, and we discuss some variations
of constraints.

1 Introduction

In University Course Timetabling (UCT) we usually try to allocate resources to teaching events
such that the resulting timetable can be implemented throughout a teaching period without
severe conflicts, or – even more – such that some notion of a ‘good’ timetable is met (for an
overview see e.g. [McC06,Rud15,KS13,BKH15]). Due to the many variations of this setting in
di↵erent institutions there is a high diversity within the family of UCT problems. On the other
hand, there is also something like a core set of constraints that appear in many scenarios and
that determine the minimum complexity we have to face at least when it comes to computations,
e.g., rooms and teachers must not be assigned more than once in the same period. These hard
constraints turn the general problem of allocating rooms, periods and sometimes also teachers
and students into a hard computational task [EIS75,CK96].

We analyze in this paper the structure of UCT problems in terms of complexity based on
a typical set of hard constraints. We gain this structure by looking at a natural notion of a
subproblem where we consider the required entities (rooms, periods, teachers) separately and
distinguish the order in which they are assigned to events. More precisely, we vary for each
entity the cases whether this entity is not considered at all, or if a feasible assignment for
this entity is already given in the input, or if a feasible assignment for this entity needs to be
computed. We also distinguish single and multiple teachers per event and if event choices of

⇤
Hochschule Trier, Schneidershof, D-54293 Trier, Germany

†
Corresponding author: H.Schmitz@hochschule-trier.de

1

students are included or not. This gives a multitude of 66 subproblems that are embedded in
this sense in the overall model, among them the opening questions from our abstract.

The role of subproblems in practical applications can be seen at least in the following
ways. They can appear as building blocks in algorithms that go back and forth between single
assignments, e.g., fix an assignment of periods, then assign teaching assistants if possible –
if not, go back and assign (other) periods, and so on. If some assignments are fixed, then
a subproblem can also be understood as a recomputation problem if parts of the basic data
have changed, e.g., if teachers meanwhile have other availabilites. Finally, we can think of
subproblems as consistency checks for the data provided since partial assignments constitute
necessary conditions that are reasonable to check before a costly computation for the general
problem is initiated. We think that it is fundamental to know which of these subproblems
are (as) hard (as the general problem), and which of them are computationally easy. So our
results also support approaches that are based on attacking UCT timetabling by distinguishing
easy and hard portions of the problem – approaches that have been successful in the past, see
e.g. [Kos05,LL12].

On the technical side, we cope with the multitude of subproblems in two ways. We derive
from our set of hard constraints an order relation on subproblems, that is consistent with
reductions and that we use to propagate complexity results among subproblems (Theorem 3.1).
Secondly, we capture various subproblems at the same time by bipartite assignment problems
(BAPs) with additional constraints and settle their complexity, inspired by [PZ80, TIR78].
The use of bipartite (multi-)graphs is a natural way to look at UCT problems, e.g., when
computing feasible edge colorings [dW03,AdW02] or bipartite matchings [tEW01,Kin14,dW71].
We demonstrate that certain parameters of BAPs can make an important di↵erence in terms
of complexity, for example if conflicting sets form a partition or not. This is in line with related
work where for particular settings also boundaries between hard/easy problem versions were
identified, e.g. for the class-teacher problem [Got62], with respect to availability constraints
[Csi65,EIS75] or students course choice [CK96]. Among others we show that a variation of the
NP-complete problem known as Perfect Matching with Node Partitions [PZ80] can be
solved e�cienctly if we exploit the structure of the edge set as it appears in our UCT context
(Prop. 4.4). Moreover, algorithms for BAPs can be used to solve all subproblems they capture
– which in turn motivates to look at these BAPs more closely in future work.

The complexity results for all subproblems are summarized in Tables 3, 4 and 5 which can
serve as quick look-up tables for hardness results if at least the constraints of our model (cf.
Table 1) are present (e.g., the answers to the first three questions from the abstract are hard,
easy and hard). The e↵ect of adding constraints on teachers and rooms is given in Table 6. As
a by-product we introduce a concise tuple notation for (sub-)problems, which can help to ease
future discussions about the UCT problem family.

Notations. All variables like i, j, k, l, . . . are nonnegative integers and all considered sets like
A, B, E, . . . are finite. With #A denote the cardinality of some set A. Initial segments of N+

are denoted by [↵] = {1, . . . , ↵}. Finite families A of subsets over some universe A are written
in calligraphic letters, as in A = {Ai ✓ A}i2[↵]. A partition A of a A is a set A = {Ai ✓ A}i2[↵]
of pairwise disjoint and non-empty blocks Ai such that

S
i2[↵] Ai = A. Unless stated otherwise,

we consider undirected and simple bipartite graphs G = (A [B, E) where each edge ab 2 E

joins a vertex in A with a vertex in B. We call G = (A [B, E) complete if E = A ⇥ B. For a
bipartite graph G = (A [B, E) we say M ✓ E is a matching of A if #M = #A and if for all
distinct edges ab, a

0
b
0 2 M it holds that a 6= a

0 and b 6= b
0. We will frequently make use of the

term assignment of A where we only require that M has cardinality #A and that a 6= a
0 for

each pair of distinct ab, a
0
b
0 2 M . When we classify decision problems as easy or hard we do

2

so in terms of computational complexity and mean that a problem P belongs to the class P or
is shown to be NP-complete. With p

m denote polynomial-time many-one reductions between
decision problems. For definitions on complexity classes and reductions we refer to standard
textbooks, e.g. [GJ90].

Our Model. We assume in our UCT model that a set E of events is given and we need to
assign to each event e the following entities:

• one room re from a given set of rooms R, and

• one period pe from a set of non-overlapping periods P , and

• either a single teacher te or a set Te of teachers, from a given set T .

We distinguish the cases of a single teacher and a set of teachers in order to discuss the
implications later. In the latter case the number #Te of needed teachers is specified per event
and is at least one. There is also a set S of students given who already have selected their events,
which corresponds to a simple course model where students choice is conducted on event level.
An alternative way to look at it is that students have already been scheduled to certain events in
the input, i.e., the pre-timetabling setting of student sectioning. Note that this can also be used
to model curriculum-based timetabling where single students represent their whole curriculum.
We refrain here from including other forms of student sectioning in the same model and refer
to [DPS16,Sch16] for complexity results for student sectioning.

A timetable is feasible for the given instance if assignments for all events can be found such
that specified constraints are satisfied. We only consider so-called hard constraints required for
a practical implementation of a timetable, e.g., two di↵erent events must not be scheduled in
the same room during the same period. The list of constraints for our model is given in Table 1.
Binary constraints refer to all pairs of given events while unary constraints restrict possible
assignments for each single event. On one hand, this list is not minimal in the sense that, e.g.,
for some events a slight violation of room capacities might be acceptable or even necessary in
practice. On the other hand, due to the many variations of problems from the UCT family it
is clear that additional hard constraints could be needed which add to the complexity of (sub-
)problems, e.g., if one event has to follow another event in the next period [tEW01]. For our
structural analysis we stick here to this list of typical constraints that appear in many scenarios.

Table 1: Hard constraints considered in our model.
Constraint Type Comment

C1 room conflict binary a room can be scheduled at most once a period
C2 teacher conflict binary a teacher can be scheduled at most once a period
C3 student conflict binary a student can be scheduled at most once a period
C4 event availability unary an event must be scheduled at its available periods
C5 teacher ability unary a teacher must be capable to teach this event
C6 room capacity unary a room’s capacity must not be exceeded
C7 room availability unary a room must be scheduled at its avail. periods
C8 teacher availability unary a teacher must be scheduled at his avail. periods
C9 number of teachers unary each events has the number of needed teachers

Although completeness of assignments is implicitly understood, i.e., for all events we have to
assign exactly one room, one period and the needed teachers, we list constraint C9 to emphasize
that a single teacher is possibly not enough. Also note that there is no constraint that refers to

3

the course choice of students explicitely, but it needs to be respected during period and room
assignments (C3, C6). All problems we consider are decision problems where we ask if a feasible
timetable exists w.r.t. the input data and the set of all active constraints (in the next section
we define subproblems for which only a subset of the constraints from Table 1 is reasonable
to consider). Observe that the corresponding optimization problems asking to maximize the
number of events in a feasible assignment are not easier in term of complexity.

The rest of the paper is organized as follows. In the next section we define all subproblems
that result from our decomposition approach, introduce a concise notation for them and explain
their role in the UCT setting. Then we show in Section 3 how subproblems are related in
terms of polynomial-time many-one reductions. In Section 4 we introduce bipartite assignment
problems with additional constraints and classify them as easy/hard. We use these general
results to determine the complexity of all our subproblems in Section 5. In Section 6 we look
more detailed at those of them that are sensitive to slight changes of constraints concerning
rooms and teachers. Finally, we conclude with notes on future work in Section 7.

2 Decomposition and the Role of Subproblems

For each of the assignments of rooms, periods and teachers to events we distinguish in subprob-
lems the cases

(1) whether this entitiy is not considered at all, or

(2) if a feasible assignment for this entity is already given in the input, or

(3) if a feasible assignment for this entity needs to be computed.

Additionally, we like to vary the cases of single/multiple teachers and if event choices of
students are included or not.

Subproblem notations. In our tuple notation for subproblems we write ‘�’ if an entitiy is
not taken into account (1), we indicate a given assignments by italic letters (2), and assignments
that need to be computed by bold letters (3). The first component refers to the assigment of
rooms (�, r or r), the second to the assignment of periods (�, p or p), the third to single or
multiple teachers (�, t, T , t or T), and the last component informs whether the given course
choices of students are included (� or S). As an example consider the problem (r,p, t, S) where
one teacher for each event is already fixed in a feasible way (i.e., teacher abilities are respected,
see C5) and event choices of students need to be respected. Then the problem asks to find a
feasible assignment of a room and a period for all events, according to the remaining constraints
and while leaving the given teacher assignment unchanged. Note that ‘�’ in the last component
would exclude checking room capacities and period clashes for students (C6, C3).

Each component in this notation can be chosen independently giving 66 many problems
where at least one component is set in bold letters. There are 40 problems which ask for the
assignment of exactly one type of entity, and 26 multi-assignment problems. When we use
the term subproblem we mean a decision problem defined by any of these 66 notations. All
subproblems clearly belong to the class NP since timetables are polynomially length-bounded
w.r.t. input length and all constraints can be verified in polynomial-time for a given timetable.
For ease of notations we write ‘⇤’ in a component if the assignment might or might not be given
in the input, and talk about the respective subproblems simultaneously, e.g., (r, ⇤, t, S) refers
to (r, �, t, S) and (r, p, t, S).

4

Active constraints. It needs to be clear from the problem notation what constraints from
Table 1 apply to each subproblem: The general policy is that we consider all constraints that
can be reasonably applied, i.e., all constraints for which all required entities are present in the
subproblem notation, either as part of the input or part of the output. This constraint set can
be easily determined for each subproblem by Table 2 which relates constraints and required
entities. If the assignment given in some row needs to be computed, then the constraints in the
second column are obligatory while the other constraints in that row apply if the component
in the column heading is also set. If more than one assignment needs to be computed, then
constraint sets are joined. As an example consider (�,p, t, S). We need to consider constraints
{C4} [{C2, C8} [{C3} from row p since t and S are mentioned in the problem notation,
additional we have constraints {C5, C9} [{C2, C8} [; from row t due to p and S. So together
we have C2 (period clashes for the assigned teachers must be avoided), C3 (period clashes for
the given students must be avoided), C4 (events must be available at the period to assign), C5

(teachers must have the ability to teach the events they are assigned to), C8 (assigned teachers
must be available at the assigned period) and C9 (the required number of teachers have to be
assigned).

Table 2: Constraint sets for subproblems. Each row represents the constraints which must
be satisfied if we ask for this assignment and if the column heading appears in the problem
notation.
to be computed obligatory r or r p or p t/T or t/T S

r ; – {C1, C7} ; {C6}
p {C4} {C1, C7} – {C2, C8} {C3}
t/T {C5, C9} ; {C2, C8} – ;

Composition, recomputation and consistency checks. Suppose we want to compute
assignments for two or more entities simultaneously. Clearly, if there is no feasible assignment
for a single entity alone, then there is also no feasible assignment for this entity if we additionally
ask for other assignments at the same time. But if the answer is positive, one can think of
composing the computations for subproblems by taking the assignment for the first entity as
fixed input to the second computation, and so on (although we consider decision problems, any
reasonable algorithm will actually compute a solution if the answer is positive). Note that in
general this straight-on composition of single-assignment problems does not provide a decision
algorithm for the respective multiple-assignment problem since each subproblem asks for the
existence of an arbitrary feasible assignment. So if a particular assignment for some entity
is fixed beforehand, there might not exist a feasible assignment for another entity under this
restriction – although simultaneous assignments for both entities are possible. However, this
still leaves room to construct algorithms that go back and forth between subproblems in various
ways. E.g., in order to find a solution to (r,p, t, �) one could start with (�,p, t, �) to obtain
a period assignment p, then try to solve (r, p, t, �) and if this fails, go back to (�,p, t, �) for
a di↵erent p

0. We think it is important to know which of these subproblems can be solved
e�ciently, and which are computationally hard, as indicated by our hard/easy classification of
all subproblems below.

Subproblems with fixed assignments in the input can also be understood as recomputation
problems if parts of the basic data have changed. As another example suppose we already have
a solution to (r,p,T, S) and teacher availabilities have changed. Then (r, p,T, S) asks for a
(new) feasible assignment of teachers to events while keeping the previous room and period

5

assignments, whereas (r,p, T, S) keeps the allocation of teachers to events but re-schedules
rooms and periods. Observe that there are six subproblems that are reasonable to consider as
recomputations in order to react to the change of data besides computing a completely new
solution to (r,p,T, S). Again, we think that it is fundamental to know which of these problems
can be solved e�ciently and which are as hard as the general problem.

Finally, we think of subproblems as consistency checks for the data provided. Suppose we
look for a solution to (r,p, t, S). Before we initiate a costly computation for the general problem,
it is reasonable to check the necessary condition that solutions to (r, �, �, S), to (�,p, �, S)
and to (�, �, t, S) must exist, even more if these checks are easy to carry out. Note that positive
answers to the remaining double-assignment problems constitute necessary conditions as well.
To sum up, subproblems play an important role as a basis for understanding the structure of a
given specific UCT scenario.

3 Reductions between Subproblems

Intuitively, a subproblem with a fixed assignment for some entity should not be easier than
without considering this entity at all, and a subproblem where we need to compute an assignment
should not be easier than the case when a feasible assignment is already given in the input for
that entity. It turns out that we can make this intuition precise in terms of polynomial-time
many-one reductions between subproblems, but we will also find out that some details are quite
sensitive to the actual set of constraints. To formalize this we start with the definition of a
partial order � on (the symbols in) each component of our subproblem notation given by the
relations depicted in Fig. 1. We denote by � the reflexive and transitive closure of � and extend
it in a natural way to a product order on subproblem notations. So for example it holds that
(�,p, t, �) � (r,p,T, S) whereas (�,p, �, S) and (r, p, T, �) are incomparable. We use the
following theorem to propagate complexity results among subproblems.

�

r r

�

p

p

�

t

t

T

T

�

S

Figure 1: Partial order on (the symbols in) each component of the subproblem notation.

Theorem 3.1 If P and P 0
are subproblems, then P � P 0

implies P p
m P 0

.

Proof We consider each component and each relation from Fig. 1 separately due to transitivity
of p

m. Let x be an instance of P. We show how to construct an instance f(x) of P 0 such that
x is a yes-instance for P if and only if f(x) is a yes-instance for P 0. It will be obvious from the
instructions for f(x) that its construction can be carried out in time polynomial in the length
of x.

1. Room component: Let P = (�, b, c, d) and P 0 = (r, b, c, d) for fixed b 2 {�, p,p},
c 2 {�, t, T, t,T} and d 2 {�, S}. Moreover, let C ✓ {C2, C3, C4, C5, C8, C9} be the set of
constraints for P as derived from (�, b, c, d). We need to add a feasible room assignment to
x such that C1 and C7 hold if b 6= �, and such that C6 holds if d 6= �. So we introduce a
synthetic set of rooms R that are always available and that have su�cient capacities for all

6

students. Then we fix in f(x) for each event one room from R such that all pairs of events have
di↵erent rooms assigned, and provide this room assignment as an additional input. Note that
these rooms are feasible w.r.t. C1 and C7 no matter how periods are assigned to events, and
that it is feasible w.r.t. C6 no matter how many students have selected an event. Now suppose
that x is a yes-instance of P and let tt be a witnessing timetable that satisfies all constraints
in C, and let tt

0 be the same as tt but with the above room assignment added. Then tt
0 does

not change the room assignment fixed in f(x) and it still satisfies all constraints in C because
no Ci 2 C refers to rooms. So f(x) is a yes-instance of P 0 as witnessed by tt

0. Conversely, if tt
0

is a timetable witnessing that f(x) is a yes-instance of P 0, then dropping all room assignments
gives a feasible timetable for input x and constraint set C.

For the second case keep all notations but let P 0 = (r, b, c, d). Then we just add the set of
rooms R to obtain f(x) from x which allows for feasible room assignments without a↵ecting the
other constraints. So if x is a yes-instance of P, then there is also a timetable witnessing that
f(x) is a yes-instance of P 0 since an additional feasible room assignment exists, and dropping
such a room assignment conversely gives a feasible timetable for x.

2. Period component: Let P = (a, �, c, d) and P 0 = (a, p, c, d) for fixed a 2 {�, r, r},
c 2 {�, t, T, t,T} and d 2 {�, S}. Moreover, let C ✓ {C5, C6, C9} be the set of constraints for
P. We proceed as before and fix a period assignment in advance that does not reduce the set
of feasible timetables in P 0 although more constraints need to be respected. So we introduce a
synthetic set of periods P and pre-assign each event to a di↵erent period from P . Additionally,
we set the data in f(x) such that all events, all rooms and also all teachers are always available.
The pre-assignment of periods is feasible since there are no period clashes for rooms, teachers
and students (C1, C2, C3) and all availablities are vacuously fulfilled (C4, C7, C8). So solutions
for x may serve as solutions for f(x) and vice versa.

For the second case let P = (a, p, c, d) and P 0 = (a,p, c, d) and observe that both subprob-
lems have the same set of constraints attached. However, in x there is an assignment of periods
to events already fixed and we have to ensure that this given assignment is the only one that
can be computed for instance f(x) – without actually providing it in the input. This can be
achieved by altering the availablities of events such that each event is only available at the
periods assigned in x. If we leave all other data unchanged, then the set of feasible timetables
for x and f(x) coincide.

3. Teacher component: Reductions for this component can be easily obtained from the
following observations: To proceed in the third component from � to t we can introduce as
before a synthetic set T of teachers that are always available, and assign to each event a
di↵erent teacher. If a teacher assignment is already given in the input we can reduce to t or
T, respectively, if we use the abilities of teachers per event to allow that only the formerly
fixed assignment remains feasible. Finally, observe that the single teacher requirement is just a
special case of multiple teachers, and we can set #Te = 1 when reducing from t to T.

4. Student component: It remains to look at P = (a, b, c, �) and P 0 = (a, b, c, S) where we
need to adapt x such that the additional constraints C3 and C6 do not cut the set of feasible
timetables. To do so we introduce a synthetic set S of students each of which has selected a
single but di↵erent event, and all rooms have capacitiy at least 1 (note that we could set S = ;
as well). 2

The proof shows why the partial order from Fig. 1 looks as it does when we stick to the
constraints from Table 1: Without any other constraints we don’t know how to fix a given room
assignment when we are asked to compute one, in contrast to periods and teachers where we
can use availabilities of events and the abilities of teachers for this purpose. However, if we add
a constraint like the requirement of particular resources of rooms that are needed for an event,

7

then we also have � ! r ! r in the �-order for the room component. So if constraints are
added or removed, the diagram in Fig. 1 changes accordingly.

4 Bipartite Assignment Problems with Additional Constraints

In this section we introduce rather abstract problem definitions and determine their complexity.
We do so in a uniform way based on assignments in bipartite graphs G = (A[B, E) – a natural
way to look at UCT subproblems. When we apply these problems in our context, then A will
mostly be a set of events. The most basic version only requires that for each event exactly one
assignment is possible.

Basic Bipartite Assignment Problem (BAP)
Input: A bipartite graph G = (A [B, E).
Question: Is there an assignment M ✓ E for A?

Obviously, a feasible assignment can be found i↵ each a 2 A has at least degree one, which we
may assume w.l.o.g. since events with no possible assignments at all can be initially discarded.
So BAP without any other constraints is a trivial problem. Next we turn to the case where
di↵erent events must not be mapped to the same entity on the right-hand side.

BAP(A)
Input: A bipartite graph G = (A [B, E) and a family A = {Ai ✓ A}i2[↵] of conflicting

sets.
Question: Is there an assignment M ✓ E for A such that for all distinct ab, a

0
b
0 2 M it

holds that b 6= b
0 whenever a, a

0 2 Ai for some i?

As an example consider (�,p, T, �) where events that share at least one teacher need to
be scheduled in di↵erent periods, which can be modeled by conflicting sets At for each teacher.
We notice that di↵erent properties of A are crucial for the complexity of BAP(A).

Proposition 4.1

1. BAP(A) is NP-complete, even in the restricted case that G is complete and that #{i|a 2
Ai} = 2 for all a 2 A.

2. BAP(A) is in P in the resctricted case that A is a partition of A.

Proof 1. Clearly BAP(A) is an NP problem. We show completeness by reduction from edge
coloring for arbitrary simple graphs [Hol81]. Let G = (V, E) and some integer k be given,
and we ask if we can assign one out of k colors to each edge such that no adjacent edges share
the same color. We construct a complete bipartite graph with vertex partitions A = E and
B = [k] and obtain G

0 = (E [[k], E ⇥ [k]). Moreover, we set A = {Av | v 2 V } where Av is
the set of all edges incident to v and hence conflicting w.r.t. color. Note that each edge appears
exactly twice in some set Av. Then (G, k) is a yes-instance of edge coloring if and only if
(G0

, A) is a yes-instance of BAP(A).
2. If A is a partition of A, we look at each block Ai ✓ A separately and need to find a

perfect matching in all of the hereby restricted bipartite graphs [HK73]. 2

We also note that the first statement also holds in the restricted case that G is complete
and that #Ai = 2 for all i if we reduce from vertex coloring [Kar72] and swap edges and
vertices in the reduction.

For the next problem observe that with a single family A of conflicting sets we are only
capable of modeling conflicts of the same kind, e.g., caused by given teacher assignments. If

8

more kinds of conflicts are present, e.g., if also room assignments already exist, then we need
to extend our definitions to capture these constraints as well.

BAP(A,A0)
Input: A bipartite graph G = (A [B, E) and families A = {Ai ✓ A}i2[↵] and A0 =

{A
0
j ✓ A}j2[↵0] of conflicting sets.

Question: Is there an assignment M ✓ E for A such that for all distinct ab, a
0
b
0 2 M it

holds that b 6= b
0 if a, a

0 2 Ai or a, a
0 2 A

0
j for some i, j?

It is immediately clear from Prop. 4.1.1 that BAP(A,A0) is NP-complete even if G is
complete. So we only look at the case when A and A0 are both partitions of A.

Proposition 4.2 Assume that A and A0
are partitions of A.

1. BAP(A,A0) is NP-complete, even if #(Ai \ A
0
j)  1 for all Ai, A

0
j.

2. BAP(A,A0) is in P in the restricted case that G is complete.

Proof 1. Clearly BAP(A,A0) is an NP problem. We show completeness by reduction from
list edge coloring for bipartite graphs [Mar05]. Let G = (X [Y, E) and lists L(e) of colors
for each edge e 2 E be given, and we ask if we can assign one of the colors in L(e) to each
edge e such that no adjacent edges share the same color. We construct a bipartite graph G

0

with vertex partitions A = E and B =
S

e2E L(e) and include edges ec 2 A ⇥ B if c 2 L(e).
Moreover, we set A = {Ax | x 2 X} and A0 = {A

0
y | y 2 Y } where Ax and A

0
y are the sets of

all edges incident to x 2 X and y 2 Y , respectively. Observe that A and A0 are both partitions
of A, and that #(Ax \ A

0
y)  1 since otherwise there is more than one edge joining x, y in G.

Then (G, {L(e)}e2E) is a yes-instance of list edge coloring if and only if (G0
, A, A0) is a

yes-instance of BAP(A,A0).
2. We show this by reduction to edge coloring for bipartite multigraphs [COS01]. So let

G = (A [B, A ⇥ B) and partitions A, A0 of A be given. We construct G
0 = ([↵] [[↵0], E) as a

bipartite multigraph with l edges between some i 2 [↵] and j 2 [↵0] if #(Ai \ A
0
j) = l, and ask

if G
0 can be properly colored with k = #B many colors. Then (G, A, A0) is a yes-instance of

BAP(A,A0) if and only if (G0
, k) is a yes-instance of edge coloring for bipartite multigraphs.

2

We summarize the complexity results by now for later reference and distinguish di↵erent
parameter combinations.

Ref. Problem #{i|a 2 Ai} ↵ #{i|a 2 A
0
i} ↵

0 complete? P/NPC comment

1� BAP - - - - no P
2� BAP(A) = 1 arb. - - no P Prop. 4.1.2
3� BAP(A) = 2 arb. - - yes NPC Prop. 4.1.1
4� BAP(A) arb. arb. - - no NPC unrestricted
5� BAP(A,A0) = 1 arb. = 1 arb. yes P Prop. 4.2.2
6� BAP(A,A0) = 1 arb. = 1 arb. no NPC Prop. 4.2.1
7� BAP(A,A0) arb. arb. arb. arb. no NPC unrestricted

9

In order to model cases of two simultaneous assignments as in (r,p,t,-) we further extend our
constraints and consider two families of conflicting sets also on the right-hand side for vertices
in B.

BAP(A;B,B0)
Input: A bipartite graph G = (A [B, E) and families A = {Ai ✓ A}i2[↵], B = {Bj ✓

B}j2[�] and B0 = {B
0
k ✓ B}k2[�0] of conflicting sets.

Question: Is there an assignment M ✓ E for A such that for all distinct ab, a
0
b
0 2 M it

holds that {b, b
0} 6✓ Bj for no j and {b, b

0} 6✓ B
0
k for no k whenever a, a

0 2 Ai for
some i?

Observe that if we set B = {{b}|b 2 B} as singeltons and omit B0 then we meet the
requirements of BAP(A), hence we know again from Prop. 4.1.1 that BAP(A;B,B0) is NP-
complete even if G is complete. However, in our UCT context it might be that B and B0 are
partitions of B.

Proposition 4.3 Assume B and B0
are partitions of B.

1. BAP(A;B,B0) is NP-complete even if A = {A}.

2. BAP(A;B,B0) is in P if A = {A} and if B or B0
is a family of singletons.

Proof 1. Clearly BAP(A;B,B0) is an NP problem. We show completeness by reduction from
3-Dimensional Matching (3DM) [Kar72]. Given finite and pairwise disjoint sets X, Y , Z

with #X = #Y = #Z and some J ✓ X ⇥Y ⇥Z we need to decide whether a perfect matching
M ✓ J exists. To do so, we set A = X and B = {yz 2 Y ⇥ Z | 9x xyz 2 J} in our bipartite
graph G. Edges x(yz) 2 A ⇥ B exist i↵ (x, y, z) 2 J . Partitions B and B0 of B are induced by
Y and Z, i.e., each By (B0

z) consists of all vertices from B containing y (z, respectively), which
ensures that each of these vertices is chosen at most once. Note that we get a perfect matching
since we ask for an assignment for A. Finally let A = {A} such that constraints need to be
respected for all pairs of vertices from A = X. Then (X, Y, Z) is a yes-instance of 3DM if and
only if (G, A, B, B0) is a yes-instance of BAP(A;B,B0).

2. Now suppose that additionally and w.l.o.g. B = {{b}|b 2 B} Then we only need to decide
whether there is a matching of A in G. If partition B0 is not a family of singeltons, then we
merge all vertices from each B

0
k 2 B0 into a single vertex and again ask for a matching of A. 2

Finally we recall a variation of the NP-complete problem known as Perfect Matching
with Node Partitions [PZ80] where M only has to be a matching of A instead of being
perfect.

Bipartite Matching Problem with Vertex Partitions (BMP(A;B))
Input: A bipartite graph G = (A[B, E) and partitions A of A and B of B of conflicting

sets.
Question: Is there a matching M ✓ E of A such that for all distinct ab, a

0
b
0 2 M it holds

that neither a, a
0 are in the same block of A, nor b, b

0 are in the same block of
B?

As an example consider (r,p,t,-) where partitions A and B naturally appear when events
are grouped by teachers, and rooms by available periods, resp.. However, in this case the edges
between two blocks have a special structure due to the fact that events and teacher have no
room restrictions in our model (note that the fourth component is �, we discuss additional
constraints in Sec. 6). We make this observation precise with the following notations.

10

For G = (A [B, E) we say that E
0 ✓ E is closed under product if for all distinct edges

ab, a
0
b
0 2 E

0 it holds that ab
0
, a

0
b 2 E

0. A subgraph G[A0 [B
0] of G induced by A

0 ✓ A and
B

0 ✓ B is closed under product if its edge set has this property. Finally, a bipartite graph G

with partitions A and B is closed under product if each subgraph G[Ai [Bj] for all i, j has this
property.

Proposition 4.4 BMP(A;B) is in P if G is closed unter product w.r.t. A, B.

Proof We show this by reduction to Max Flow [FF87]. Let (G = (A [B, E), A, B) be an
instance of this problem, and call a block Bj connected to some a 2 Ai if there exists at least
one edge ab with b 2 Bj (and vice versa).

Construction. We define a flow network F = (V, E
0) as follows (cf. Figure 2): All edges in F

have capacity one. The source s has an edge to all vertices of the first layer A. The second layer
consists of all vertices ij 2 [#A]⇥ [#B] and a 2 Ai has an edge to some ij if it is connected to
Bj . The third layer has a copy of each ij linked with a single edge. The last layer consist of all
vertices from B. Each ij from the third layer has an edge to some b 2 Bj if b is connected to Ai.
Finally, all b 2 B have an edge to the sink t. We ask for a flow f in F with value v(f) = #A.

s�

�

�

�

�

�

�
�

�
�

ij

ij
0

Ai

Ai�

�

�
�

�
�

�

�
�

�

�

Bj

Bj�

t�

ij

ij
0

bj

b
0
j

bj
0

b
0
j

0

...

... ...

i
0
j

i
0
j

0
i
0
j

0

i
0
j

A B

� �... ...

a

a
0

a
00

...

Figure 2: Sketch of a resulting flow network.

Assume that M is a matching of A such that for all distinct ab, a
0
b
0 2 M in holds that

neither a, a
0 are in the same block of A nor b, b

0 are in the same block of B. For each ab 2 M

with a 2 Ai and b 2 Bj we obtain disjoint s-t-paths each with one unit of flow on edges
(s, a), (a, ij), (ij, ij), (ij, b), (b, t). Note that this also works if G is not closed under product.

Conversely, suppose there is a flow f with value v = #A. Then we define M as the set of
all edges ab if the path (a, ij), (ij, ij), (ij, b) carries one unit of flow. By construction it holds
that a is connected to Bj and b is connected to Ai, so ab exists in G since it is closed under
product. Edge set M has cardinality #A since each a has capacity one on the incoming edge.
Moreover, all vertices b are pairwise distinct due to capacities on outgoing edges, hence M is a
matching of A. There are no two edges in M connecting the same pair of blocks Ai, Bj due to
capacity one on (ij, ij), and for each a 2 Ai and b 2 Bj there is at most one a-b-path in F . 2

We summarize the remaining problems as follows.

11

Ref. Problem A B or B0 P/NPC comment

8� BAP(A;B,B0) {A} singletons P Prop. 4.3.2
9� BAP(A;B,B0) {A} arb. part. NPC Prop. 4.3.1
10� BAP(A;B,B0) arb. part. arb. part. NPC unrestr.
11� BMP(A;B) with product closure arb. part. arb. part. P Prop. 4.4
12� BMP(A;B) arb. part. arb. part. NPC [PZ80]
13� BMP(A;B) arb. arb. NPC unrestr.

5 Complexities of all UCT Subproblems

In this section we derive the complexities of all UCT subproblems. In light of Theorem 3.1
it is su�cient for a complete classification to identify �-maximal problems that are in P and
�-minimal problems that are NP-complete.

Theorem 5.1

Subproblems (r,p, �, �), (r, p,T, S), (r,p, t, �), (r, p,T, S) and (�,p, t, �) are in P. Subprob-

lems (�,p, T, �), (�,p, �, S) and (r,p, t, �) are NP-complete.

Proof For each problem we mention the respective reduction and provide some indication how
the reduction works. We use problem references i� from Section 4 and write ! i� if the current
subproblem is reducible to problem i� and i�! if problem i� is reducible to our subproblem.

(r,p, �, �): ! 2�
Events are grouped subject to common rooms into blocks Ai. Edges are present due to
availabilities of events and rooms.

(r, p,T, S): ! 2�
We partition events in A according to common periods. To ensure exactly #Te distinct
assignments of teachers we copy each event and the incident edges #Te times. Note that
all copies are in the same block of A. Teacher abilities are respected by (non-)existence
of edges.

(r,p, t, �): ! 11�
We partition events in A according to common teachers. All eligible room-period com-
binations are partitioned in B according to common periods. Edges are drawn between
some event and a room-period combination if an event and its preassigned teacher are
available in this period. Note that if an event is available at some period then the event
is connected to all rooms in this period. Then the resulting instance BMP(A;B) is closed
under product.

(r, p,T, S) : ! 2�
Assignments for rooms and teachers can be found independently in our setting since they
do not share any constraints. Observe that if a period assignment is already present
that is feasible for teachers and students, then we find feasible rooms when events are
paritioned in A according to common periods. Edges exist if the room is eligible w.r.t.
period availability and su�cient capacity for the given students. If a period assignment
is already present that is feasible for rooms and students, then we can assign teachers as
in (r, p,T, S) above.

(�,p, t, �): ! 2� with A = {A}, i.e., a matching of A

Each event is a vertex in A, each eligible teacher-period combination is represented as a

12

vertex in B. By setting A = {A} we ensure that each combination can be assigned at
most once. Unary constraints are modeled by (non-)existence of edges.

(�,p, T, �), (�,p, �, S): 3�!
If (G = (A [B, A ⇥ B), A) is an instance of 3� we regard A as events, B as periods
and edges as (full) availabilities of events. Each Ai 2 A represents a teacher or student,
respectively. Teachers are available for all periods as well. Observe that these subproblems
are already NP-complete if each event has only two teachers that are always available, or
two students.

(r,p, t, �): 6�!
If (G = (A [B, E), A, A0) is an instance of 6� we regard A as events, B as periods and
edges as availabilities of events. Moreover, we assign room i to each event a 2 Ai and
teacher j to all events a 2 A

0
j , both with full availability.

2

With both Theorems 3.1 and 5.1 we now have the hard/easy-classification of all subproblems
as depicted in Tables 3 and 4.

Table 3: E�ciently decidable subproblems.

Subproblems P � P 0 Reduction No. of subproblems

(⇤, ⇤,T, ⇤), (⇤, ⇤, t, ⇤) (r, p,T, S) ! 2� 16
(⇤,p, �, �) (r,p, �, �) ! 2� 2
(�p, t, �) (�p, t, �) ! 2� 2
(r,p, �, �) (r,p, t, �) ! 11� 2
(r, ⇤, ⇤, ⇤),(r, ⇤,T, ⇤), (r, ⇤, t, ⇤) (r, p,T, S) ! 2� 20

42

Table 4: NP-complete subproblems.

Reduction Subproblem P � P 0 No. of subproblems

3�! (�,p, T, �) (⇤,p, T, ⇤), (⇤,p,T, ⇤), (r,p, T, ⇤) 10
3�! (�,p, �, S) (⇤,p, ⇤, S) 6
6�! (r,p, t, �) (r,p, t, ⇤), (r,p, t, ⇤), (r,p, ⇤, S) 8

24

For practical implementations the reductions in Table 3 provide polynomial-time algorithms
indeed, however some of them are just as easy as the very basic assignment problem BAP:
(r, �, �, �), (�p, �, �), (�, �, t, �) and (r, �, t, ⇤) can already be captured by problem 1�.
Similarly, we can provide bipartite assignment problems as natural upper bounds that capture
the NP-complete subproblems, which we show without further proof in Table 5. So an algorithm
for a single problem i� in this table can be used to solve the UCT subproblems in the same row
in a straightforward way.

13

Table 5: NP-complete subproblems and how they can be modeled.

subproblems Reduction

(�,p, T, �), (�,p, �, S), (r,p, T, �), (r,p, �, S), (�,p, t, S) ! 4�
(r,p, ⇤, ⇤) ! 7�
(r,p, t, ⇤) ! 10�
(r,p, t, �) ! 12�
(r,p, t, S) ! 13�

6 Additional Constraints On Teachers and Rooms

In this section we look at some variants of UCT subproblems which occur by adding constraints
w.r.t. teachers and rooms. We consider the following three constraints, which sound are quite
similar but have di↵erent e↵ects on complexities:

C10 An event can only have a room that is eligible for the assigned teacher.

Each teacher has a set of rooms where she can teach, regardless of which event. For
example, some teachers require rooms which are easily accessible.

C11 An event can only have a room that is eligible for this event.

Each event has a set of suitable rooms we can choose from. For example, some events
require a room with certain technical equipment.

C12 An event can only have a room that meets the room restictions of the assigned teacher for

this event.

Each teacher defines a set of rooms per event where she can teach, e.g., some teachers need
a blackboard for certain events while others require two projectors for the same event.

Constraints C10 and C12 need to be considered if both rooms and teachers are part of the
subproblem notation, while C11 is active in all room-assignment problems. In Table 6 we list
all relevant subproblems that were in P in the hitherto model and where we now add one of the
above constraints. Additionally we mention the respective bipartite assignment problems used
in the reductions. The complexity status of subproblem (r, p,T, �) remains open in one case.

Table 6: Subproblems and their complexity if either constraint C10, C11 or C12 is added.

Subproblems + C10 + C11 + C12

(r, p, T, ⇤) P ! 2� P ! 2� P ! 2�
(r, p,T, ⇤) P ! 2� P ! 2� P ! 2�
(r, �, t, ⇤) P ! 2� P ! 2� P ! 2�
(r, �,T, ⇤) P P ! 2� P
(r, p, t, �) P ! 11� P ! 2� NPC 9�!
(r, p,T, �) ? P ! 2� NPC 9�!
(r,p, t, �) P ! 11� NPC 12�! NPC 12�!

We mention indications of some reductions to justify complexities.

C10, C11, C12: (r, p, T, ⇤) ! 2�:

Edges in 2� exists if the room is eligible with regard to su�cient capacity, the assigned
teacher (C10), the event (C11) or the teacher-event combination (C12).

14

C10, C11, C12: (r, p,T, ⇤) ! 2�:

Edges in 2� exists if the teacher has ability to teach an event and the room is eligible for
him (C10), for the event (C11) or for the given teacher-event combination (C12).

C10, C11, C12: (r, �, t, ⇤) ! 2�:

If C10 or C12 are activated vertices in B represent an eligible room-teacher combination.
Edges are present if a teacher has ability to teach an event and the room has su�cient
capacity C10. For activated C12 we must additionally ensure that the teacher-room com-
bination is eligible for the respective event. If C11 is activated rooms and teachers do not
share constraints and hence they can be calculated independently. Observe non existence
of edges in case of the room assignment if an room is not eligible for an event.

C10, C12: (r, �,T, ⇤):
We sketch algorithm which decides this problem in O(#E ·#R ·#T). For each event, we
try a room and check, if this room is eligible for at least #Te many teachers which have
ability to teach this event. If so, we move on with the next event. If not, we try the next
room and ask again. If this is not successful for an event, we return a ‘no’-answer.

C10: (r, p, t, �) ! 11�:

For each period we construct an instance of BMP(A;B) which is closed under product
as follows: We set A = {A} since all events in a common period are pairwise conflicting.
Eligible teacher-room combinations are partitioned in B according to common teachers.
Eligible in this case means that a teacher and room are available in the considered period
and the room is in the teacher’s room set. Edges are drawn between some event and a
teacher-room combination if the respective teacher is able to teach the event. Note that
if a teacher has ability to teach an event then the event is connected to all rooms of that
teacher, which shows closure under product.

C10: (r,p, t, �) ! 11�:

We partition all events in A according to common teachers. All eligible room-period
combinations are partitioned in B according to common periods. Edges between events
and room-periods exist if an event and its assigned teacher are available in this period
and the room is in the teacher’s room set. Note that if events of the same teacher are
available in a same period then all those events are connected to the same room-period
combinations in this period block, so closure under product holds.

C11/C12 : 12�! (r,p, t, �)
We regard A as events partitioned to common teachers and B as room-periods com-
binations partitioned to common periods. Edges between an event and a room-period
combination are regarded as:

• the event is available in this period,

• the teacher is available in this period,

• if C11 is activated: the room is eligible for this event

• if C12 is activated: the room is eligible for the teacher in combination with this event

Observe that in this case we can not obtain closure under product.

C12: 9�! (r, p, t, �):
If (G = (A [B, E), {A}, B, B0) is an instance of 9� with partitions B, B0 we regard A as
events scheduled in a common period. Each vertex in B is regarded as a room-teacher

15

combination and edges indicate that a teacher-room combination is eligible for an event.
That is, if the teacher has ability to teach this event, she is available and the respective
room is in her set of eligible rooms for this event. All room-teacher combinations are
partitioned w.r.t. common teachers and common rooms, respectively. Since all events are
scheduled in parallel, each teacher and each room can be assigned at most once.

7 Conclusion

We have settled the complexities of all subproblems of a UCT model with a typical set of
constraints. Our decomposition approach is such that subproblems can be understood as re-
computation problems, as building blocks for algorithms or as consistency checks for the general
task. To obtain this classification we have carried out the following program of investigations:

(1) Identify an order relation on subproblems that is consistent with polynomial-time many-
one reductions (Sec. 3).

(2) Use abstract models (Sec. 4) to settle the complexity of all subproblems with help of
maximal and minimal subproblems w.r.t. this relation (Sec. 5).

(3) Capture groups of subproblems with the same model and identify common computational
tasks (Sec. 5).

(4) Analyse the e↵ect of variations of constraints on selected subproblems (Sec. 6).

We think that apart from our concrete results which may appear in several UCT scenarios,
in particular (4) gives a strong motivation to look for algorithms for some of the specialized
bipartite assignment problems from Section 4. Future research could also comprise to work
on some of the limitations of our initial model. So we can ask how student sectioning can fit
into such an approach, and how other constraints can be included. For example, limiting the
workload of teachers can be modeled by limiting the number of edges from certain sets of edges
in an assignment (cf. [TIR78]).

Another line of research can be to determine the borderline between easy and hard problems
more precisely in terms of parameters that are relevant to practical applications: Note for
example that problem BAP(A) with an arbitrary number ↵ of conflicting sets is hard, but
we know that it is easy if ↵  3. Since ↵ corresponds in some scenarios to the number of
di↵erent curricula one can ask if BAP(A) is still hard for any fixed ↵. Another example are
multiple-assignment subproblems where the assignment of a single teacher is easy, while the
same task is hard if events can have multiple (and yet unbounded number of) teachers. Finally,
we also believe that our approach (1)-(4) can serve as a blueprint to analyse the structure of
UCT models with other sets of constraints in order to get more insight into di↵erent what-if
scenarios.

References

[AdW02] A.S. Asratian and D. de Werra. A generalized classteacher model for some timetabling
problems. European Journal of Operational Research, 143(3):531 – 542, 2002.

[BKH15] Hamed Babaei, Jaber Karimpour, and Amin Hadidi. A survey of approaches for
university course timetabling problem. Computers & Industrial Engineering, 86:43–
59, 2015.

16

[CK96] Tim B. Cooper and Je↵rey H. Kingston. The complexity of timetable construction
problems. In Edmund Burke and Peter Ross, editors, Practice and Theory of Auto-

mated Timetabling, pages 281–295, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg.

[COS01] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-Coloring Bipartite Multigraphs
in O(E logD) Time. Combinatorica, 21(1):5–12, Jan 2001.

[Csi65] J. Csima. Investigations on a Time-table Problem. Ph.D. thesis, School of Graduate
Studies, University of Toronto, 1965.

[DPS16] M. Dostert, A. Politz, and H. Schmitz. A complexity analysis and an algorithmic ap-
proach to student sectioning in existing timetables. Journal of Scheduling, 19(3):285–
293, 2016.

[dW71] D. de Werra. Construction of school timetables by flow methods. INFOR Journal,
9(1):12–22, 1971.

[dW03] Dominique de Werra. Constraints of Availability in Timetabling and Scheduling.
In Edmund Burke and Patrick De Causmaecker, editors, Practice and Theory of

Automated Timetabling IV, pages 3–23, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[EIS75] S. Even, A. Itai, and A. Shamir. On the Complexity of Time Table and Multi-
commodity Flow Problems. In Proceedings of the 16th Annual Symposium on Foun-

dations of Computer Science, SFCS ’75, pages 184–193, Washington, DC, USA, 1975.
IEEE Computer Society.

[FF87] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network, pages 243–248.
Birkhäuser Boston, Boston, MA, 1987.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[Got62] C. C. Gotlieb. The Construction of Class-Teacher Time-Tables. In IFIP Congress,
pages 73–77, 1962.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973.

[Hol81] Ian Holyer. The NP-Completeness of Edge-Coloring. SIAM J. Comput., 10(4):718–
720, 11 1981.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[Kin14] Je↵rey H. Kingston. Timetable construction: the algorithms and complexity perspec-
tive. Annals of Operations Research, 218(1):249–259, Jul 2014.

[Kos05] Philipp Kostuch. The University Course Timetabling Problem with a Three-Phase
Approach. In Edmund Burke and Michael Trick, editors, Practice and Theory of

Automated Timetabling V, pages 109–125, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

17

[KS13] Simon Kristiansen and Thomas Riis Stidsen. A Comprehensive Study of Educational
Timetabling - a Survey. Report 8.2013, Department of Management Engineering,
Technical University of Denmark, 2013.

[LL12] Gerald Lach and Marco E. Lübbecke. Curriculum based course timetabling: new
solutions toUdine benchmark instances. Annals of Operations Research, 194(1):255–
272, Apr 2012.

[Mar05] Dniel Marx. NP-completeness of list coloring and precoloring extension on the edges
of planar graphs. Journal of Graph Theory, 49(4):313–324, 2005.

[McC06] Barry McCollum. University Timetabling: Bridging the Gap between Research and
Practice. In in Proceedings of the 5th International Conference on the Practice and

Theory of Automated Timetabling, pages 15–35. Springer, 2006.

[PZ80] David A. Plaisted and Samuel Zaks. An NP-complete matching problem. Discrete

Applied Mathematics, 2(1):65–72, 1980.

[Rud15] Hanna Rudova. University Course Timetabling - From Theory to Practice. In Mul-

tidisciplinary International Scheduling Conference (MISTA 2015) (Talk), Prague,
Czech Republic, 2015.

[Sch16] David Schindl. Student sectioning for minimizing potential conflicts on multi-section
courses. Proceedings of the 11th International Conference of the Practice and Theory

of Automated Timetabling (PATAT 2016), pages 327–337, 2016.

[tEW01] H. M. M. ten Eikelder and R. J. Willemen. Some Complexity Aspects of Secondary
School Timetabling Problems. In Edmund Burke and Wilhelm Erben, editors, Prac-
tice and Theory of Automated Timetabling III, pages 18–27, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[TIR78] Steven L. Tanimoto, Alon Itai, and Michael Rodeh. Some Matching Problems for
Bipartite Graphs. J. ACM, 25(4):517–525, October 1978.

18

	Informatik-Bericht-2018-01_Deckblatt.pdf
	Informatik-Bericht-2018-01.pdf

