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Abstract: 
 
This study describes novel methods for supporting navigation and placement of electrodes during surgeries for deep 
brain stimulation (DBS). Critical to these procedures in neurosurgery is the localization and identification of different 
target structures along the electrode's trajectory in the brain such as the subthalamic nucleus (STN), and finding the 
best position for the stimulating electrode. 
Typically, neurosurgeons use microelectrode recordings (MER) of local neural activity for detecting the target region 
intra-operatively. We developed specific methods using wavelet transformation for feature extraction from MER signals 
and generated a fuzzy inference system for automatic classification between STN and non-STN signals. The classifier 
will support the surgeon and make the decision process for the final electrode position more reliable and less time con-
suming. It can be adapted easily for the classification of other functional neural areas than the STN also. 
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1 Problem 

Deep brain stimulation (DBS) of specific structures in the basal ganglia has become a promising treatment option for 
different kinds of neurological diseases such as Parkinson's disease (PD), Dystonia, different kinds of tremors, or chron-
ic pain also [1]. In the treatment of advanced PD and Dystonia, the subthalamic nucleus (STN) is considered the most 
promising target. DBS surgery is preceded by a planning phase for the determination of the 3D-position of the STN and 
the selection of secure trajectories for sliding the electrodes through the brain. Automatic procedures evaluating CT- and 
T1-MR-imagery are available for this process [2]. In the surgery phase, a stereotactic frame is used for pushing the sti-
mulating electrodes – one per each hemisphere – along the planned trajectory towards the target position. However, 
MRI distortions, limited mechanical precision, and shifting of the brain within the cranium prevent from reaching the 
real target structure with the electrode's stimulation poles precisely. 
Therefore, in the surgery phase very often up to five electrodes are inserted on parallel trajectories for finding the best 
hit with the target structure [3]. Most surgeons use microelectrode recordings (MER) to recognize the target structure 
while sliding the electrodes towards the target. MER signals measure the local activity within a small area proximal to 
the tip of the electrode as it is moved stepwise through the brain. The MER of different brain structures can be distin-
guished based on commonly known features such as background activity, spike or burst rates [4,5]. 
Classification of the MER signals is sometimes ambiguous and often time consuming even for experienced neurosurge-
ons. There are different approaches for automatic analysis and classification of MER signals using statistical features or 
digital spike trains [6,7]. We developed a new method for MER classification based on soft de-noising and multi-level 
decomposition of the MER signals using wavelet transformation. The method extracts features for a Fuzzy classifier, 
which comes up with a self-adapting decision structure for discerning MER signals coming from different local brain 
areas and from different patients. 

2 Materials and Methods 

MERs for development and testing of the classifier were recorded at two Hospitals in Germany. The sampling rate for 
the MERs was 24kHz at the first hospital and 25kHz at the second hospital, respectively. The MER signals were meas-



ured in 1 mm (0.5 mm in target proximity) intervals along the electrode’s trajectory. We always considered signals of 
10s length per each depth step. 
Within the last decade, the main characteristics of STN signals and useful methods for their identification have been ex-
amined and described thoroughly (e.g. [4]). In principle, the most useful criteria considered for recognition of STN sig-
nals are the distribution of spikes and bursts and an increased background noise (see Figure 1 left). Nevertheless, the 
quantitative data specifying the most important features – spike rate and spike distribution – differ considerably, which 
seems to be natural, as these values differ from patient to patient. 

Feature extraction  
Based on the results we obtained from investigations of statistical features in the time domain and of spectral power fea-
tures in the frequency domain, we concentrated our feature extraction for MER signals on two aspects. Firstly, we ex-
amine the background activity of MER signals. Potential neural active signals show higher background activity and 
higher cell activity (Figure 1). We measure the grade of background activity by specific quantiles of the signal’s ampli-
tude distribution. Let vector s represent a discrete MER signal, then quantile(s,α) calculates an α-quantile of s. We cal-
culate the distribution of the α-quantile of all MER signals si collected along the trajectory of one electrode. From this 
distribution, we use a β-quantile to extract a patient specific threshold θm discerning the MER signals si coming from 
neural or non-neural brain areas. We do this latter comparison (c1(i,j) = quantile(sij,α)- θm) with respect to sub-signals sij 
obtained from subdividing each signal si into a series of intervals. 
In addition, we calculate the standard deviation std(si) of signals si and a threshold θs from their distribution in the same 
manner we achieved θm. Again, we compare the local standard deviation of sub-signals sij with θs: c2(i,j) = std(sij)- θs. 
Now, we linearly combine these two comparisons c1(i,j), c2(i,j) and get feature f1(i) describing the background activity. 
 

 
Figure 1: Typical MER signals (upper: no neural activity, below left: STN area, right: cD3 of STN signal) 

 
In the second aspect, the signals are inspected with respect to irregular bursting patterns of the STN. We can assume that 
two different sources are responsible for the background activity: first the activity of a large set of neurons in different 
distances to the electrode and second noise produced by the recording system itself, which is present for signals outside 
STN, too. Concentrating on the first source, signal si, respectively each sample sij is a sum of strong single cell activity 
of spontaneously active neurons close to the electrode, which produces the so-called spikes, and activity of a large set of 
neurons firing independently and in random manner. Thus, the signals si can be approximated as a sum of single cell ac-
tivity Si and independent and identically distributed standard Gaussian random variables zi. The noise produced by the 
recording system can be described equally. To remove this kind of noise or to estimate the unknown signal Si “De-
noising by Soft-Thresholding” [8] is an effective tool. The estimator comes nearly as close in mean square error to Si as 
any measurable estimator can come to (according to [8]). 



We use wavelet transformation to de-noise the signals. Signal si is transformed into the wavelet domain resulting in a 
finite set of coefficients ck. A threshold τ is determined and the set is transformed by a simple decision function using 
this soft threshold. Finally, the modified coefficients Ck are transformed back to time domain, resulting in the estimation 
of Si. The background activity contained in the original signal (Figure 1) is nearly completely removed and only the 
spikes remain. 
We use the de-noised signals and analyze only specific frequency ranges by multi-level wavelet decomposition. In each 
level of the wavelet decomposition process, the signal is split into two parts. One part we get from convolving signal si 
with a high-pass φhigh followed by dyadic decimation (down sampling) resulting in the detail coefficients cD1 of level 1. 
Then, we convolve signal si with a low-pass φlow followed by dyadic decimation resulting in the approximation coeffi-
cients cA1 of level 1, which give us the other part. The latter one is used as input for level 2, resulting again in detail 
coefficients cD2 respectively in approximation coefficients cA2 that are used for the next level etc. Here, detail coeffi-
cients cD3 of level 3 are considered for feature extraction (Figure 1right). First we subdivide the detail coefficients in 
intervals cD3ij and calculate their standard deviation. We examine the standard deviations of the set of intervals 
{std(cD3ij)} and calculate feature f2(i) as γ-quantile of their distribution. 

Fuzzy classifier 
Having these two features – background f1(i) and burst activity f2(i) – we use a Fuzzy classifier for assigning the signals 
si to one of two classes: STN or non-STN. The mapping from the input feature space to the output class space is per-
formed by means of a rule-based inference mechanism. We use fuzzy variables for the antecedent part of rules Ri: IF 
x1=A1k AND x2=A2l THEN yi = pi0 + pi1x1 + pi2x2. Here, the fuzzy terms are defined over the input variables features f1 
and f2, respectively. The consequent parts of the rules deliver crisp outputs yi and the final result y is accumulated from 
the outputs of the rules weighted by their firing strength µi: y = Σµiyi/Σµi (Takagi-Sugeno [9]). 
The structure of the Fuzzy classifier – fuzzy sets A1k, A2l (k,l=1,…) and the rule base – is created automatically. A train-
ing set T = {X=(f1(i),f2(i)),Y=(yi)} with feature vectors and desired outputs from a representative selection of MER sig-
nals si is used for supervised learning. Firstly, we use subtractive clustering to determine the antecedent membership 
functions (Figure 2, left). Each cluster Cr creates one fuzzy term Ajr for each fuzzy variable xj by projecting the cluster 
center (x1r,x2r) towards the axis of the according input variable xj (j=1,2). Membership functions are defined as 1D-
Gauss-Functions Nµσ with mean µ specified by the value of the according cluster center’s coordinate xjr and the variance 
is determined by the cluster’s range of influence with respect to this coordinate. The combination of all Fuzzy sets of 
both input variables in the rule antecedent delivers the rule base. Then, the parameters P = (pij) of the linear consequent 
equations of each rule are determined. The feature vectors X and the desired outputs Y from the training set are used to 
create an over-determined linear equation system with the consequent equations: Y = XP. This system can be solved by 
known methods (e.g. least squares) yielding the unknown parameters of the rule’s consequent equations in an optimized 
manner: P’ = (XTX)-1XTY. Now, the classifier’s output indicates the degree [0,1] to which a signal is STN or non-STN. 

3 Results 

We developed a prototype of the Fuzzy classifier with Matlab™. In a first step, we established its structure and tested it 
with MER data from nine patients from one hospital. The classifier was trained with MER data from one electrode of 
one patient and afterwards tested with the remaining data. In total, we had 1504 MERs of 73 electrodes for verification. 
The binary output of the classifier was congruent with the decision of a specialist in 97% of the cases. In a second step, 
we tested the classifier with MER data from another 48 electrodes originating from a second hospital. We trained the 
classifier with MER data from 5 electrodes and tested it with data from another 43 electrodes. In 96% of the cases the 
classifier’s output was correct compared to surgery records. Figure 2 right shows classification results for one electrode. 
The processing time with the Matlab-Prototype was approximately 2s per MER signal on a standard PC (1.7 GHz Intel-
Centrino©, 2 GB main memory). 

4 Discussion 

The structure of the classifier, its parameter settings for patient specific feature extraction and its decision surface are 
established by supervised learning without any manual intervention. In both test situations, the classifier worked very 
well when it was trained with a representative set of MER data. Since it adjusts its decision parameters dynamically 
with every new sequence of MER data, the sequence should show a reasonable distribution of MER signals from neural 
and non-neural areas. Most deviations from surgery records occur for signals on the passage between neural and non 
neural areas. In these cases the signals don’t show clear STN or non-STN features and it remains often a subjective de-
cision whether a signal is already STN or is still non-STN. The analog output of the classifier mostly responds to this 



situation but the binary output can’t. The classifier fails, if there are solely STN or non-STN signals in a series of MER 
signals from one electrode. This problem can be solved by restricting the parameter adaption to situations showing sig-
nals from both classes and working with static parameter sets from booting in other cases. 

 
Figure 2: MER classification (left: clustering of training population, right: STN classification) 

5 Outlook 

At present, the classifier produces binary decisions STN or not-STN. Actually, we investigate its usage for other target 
structures like e.g. globus pallidus (GPi). Extending the classifier to handle various signal classes also seems to be a 
promising field. In addition, the classifier can be used to build up a 3D-electrode model for matching it with a geometric 
model of the target structure. This would enable creating a 2.5D-visualization of the target region and intersecting elec-
trodes intra-operatively. Consequently, this would facilitate a better navigation and support the surgeon to get an objec-
tive and high quality decision about the final position of the stimulating electrode.  
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